Graduate School UHH: Workflow of Statistical Analysis with STATA: Data Management, Analysis and Visualization

Institution: Graduate School at Faculty of Economics and Social Sciences – University of Hamburg

Lecturer: Prof. Dr. Kai-Uwe Schnapp

Schedule:
Mo., 22.02.16, 10:30 – 16:00 Uhr
Mi., 24.02.16, 09:00 – 15:00 Uhr
Do., 25.02.16, 09:00 – 15:00 Uhr
Fr., 26.02.16, 09:00 – 15:00 Uhr

Place: University of Hamburg, Von Melle Park 9

Registration: Anmeldungen sind ab sofort bis zum 15.12.2015 (13:00 Uhr) über Geventis möglich.

Course description:
Kommentar/Inhalt
Studierende lernen im Allgemeinen in der Ausbildung in bestimmten Grenzen mit Statistik umzugehen. Im Idealfall werden Datenanalysen an eigens aufgesetzten Datensätzen angefertigt. Die resultierenden Statistikkenntnisse sind, je nach Ausbildungsort und -fach mal besser, mal schlechter, aber ausreichend, um den Einstieg in eigene Datenanalysen zu beginnen. Dieser Start gerät jedoch oft sehr holperig, weil ein solides Beherrschen der Statistik allein nicht genügt. Es beginnt damit, dass die Daten im wirklichen WissenschaftlerInnenleben selten genauso daher kommen, wie sie für die Analyse benötigt werden. Sie müssen angepasst, transformiert, zusammengefügt und auseinandergenommen, dokumentiert und in sinnvollen Paketen gespeichert werden. In der Fülle der Arbeitsschritte geht schnell der Überblick verloren: Was wurde wann getan, was wurde wie geändert (und warum?), welche Fälle wurden gefiltert, welche Variablen wie aggregiert. Nach mitunter nur wenigen Tagen ist nicht mehr klar, was passierte, warum eine Variable jetzt so aussieht, mit welchen Einstellungen (und sei es die Startzahl für den Zufallszahlengenerator) eine Analyse begonnen und durchgeführt wurde. Noch unangenehmer wird es, wenn später, etwa bei der Journaleinreichung, nach Dokumentation und Replikationsinformationen gefragt wird, oder wenn eine interessierte Leserin um einen (gut) dokumentierten Datensatz bittet, um die Ergebnisse aus einer Veröffentlichung selbst nachzuvollziehen. Jetzt beginnt die Suche, der Versuch, zu rekonstruieren, was oft nicht mehr zu rekonstruieren ist. Vielen dieser Probleme kann durch einen gut geplanten und während des Arbeitens dokumentierten Arbeitsprozess vorgebeugt werden. Vieles, was man selbst getan hat, kann vor dem Vergessen bewahrt werden, wenn die Arbeitsschritte klar, die Speicher- und Dokumentationsroutinen definiert sind. Dem Zweck, eine solche Arbeitsweise einzuführen, und dabei gleichzeitig die ersten Schritte mit STATA zu machen dient dieser Kurs. Es geht also nicht um die Vermittlung von Statistikkenntnissen. Es wird vorausgesetzt, dass die Grundlagen der Inferenzstatistik bekannt sind und das Kenntnisse der Regressionsanalyse bestehen. Grundkenntnisse der Varianzanalyse (ANOVA) und der Faktorenanalyse sind von Vorteil. Für Personen, denen diese Kenntnisse gibt es kurze Auffrischungssitzungen am Anfang der Woche (siehe Vorgehen). Neben der Einführung in die Oberfläche, die Befehlsstruktur, Arbeitsweise und Dokumentation von STATA soll vermittelt werden, welche Tricks und Hilfsroutinen STATA bietet, um schnell vom Programmoutput zu publikationsreifen Ergebnissen zu kommen. Besonderes Augenmerk wird auf die Erzeugung guter Grafiken gelegt. Eigene Daten können in den Workshop mitgebracht werden, sind jedoch nicht Voraussetzung.

Lernziel
Folgende Fähigkeiten und Kenntnisse sollen vermittelt werden: – Kenntnis der Oberfläche und der Elemente von STATA – Kenntnisse im Datenmanagement und der Datenmanipulation mit STATA – Durchführung einfacher statistischer Analysen mit STATA – Kenntnisse von Hilfsmitteln und Routinen zur effizienten Erzeugung publikationsfähigen Outputs mit STATA (Tabellen und Grafiken) – Kenntnisse und Fähigkeiten einer effizienten Arbeitsorganisation bei der statistischen Analyse mit STATA – Kenntnisse und Fähigkeiten einer effizienten Dokumentation der statistischen Analyse mit STATA

Man kann den Kurs SPRACHLERNKURS verstehen, in dem STATA als Sprache zur Programmierung von Datenanalysen erlernt wird.

Vorgehen
Der Kurs wird im CIP-Pool durchgeführt. Alle Arbeitsschritte werden am Computer vorgeführt und direkt von den TeilnehmerInnen an ihren Arbeitsplätzen umgesetzt.

Um sicherzustellen, dass alle Teilnehmenden den „eigentlichen“ Kurs auf gleichem Niveau starten, gibt es drei vorbereitende Sitzungen zu je 90 Minuten.
Teil 1: Einführung in die Arbeitsumgebung von STATA. Wendet sich an Personen, die noch nie mi STATA gearbeitet haben.
Teil 2: Auffrischung lineare Regression. Wendet sich an Personen, bei denen die Kenntnis der Regressionsanalyse etwas verblasst ist. Soll erreichen, dass im Kurs selbst wenig über Statistikgrundlagen gesprochen werden muss.
Teil 3: Auffrischung Faktorenanalyse. Wendet sich an Personen, bei denen die Kenntnis der Faktorenanalyse etwas verblasst ist oder noch gar nicht vorhanden war. Soll erreichen, dass im Kurs selbst wenig über Statistikgrundlagen gesprochen werden muss.

Literatur
Als Einführungsbuch in STATA empfehle ich Kohler/Kreuter: Datenanalyse mit STATA. Das Buch ist inzwischen in vierter Auflage erschienen. Diese ist auch unbedingt zu empfehlen, da sie einige sehr wichtige Neuerungen enthält.

Hinweise zur Prüfung
Die Vergabe der Leistungspunkte ist an die Abgabe einer von den TeilnehmerInnen zu lösenden und zu dokumentierenden Aufgabe gebunden (je nach individuelle Arbeitsgeschwindigkeit 5-10 Stunden Bearbeitungsdauer). In dieser Aufgabe werden Daten zu transformieren, zu dokumentieren und zu analysieren sein. Aus den Analysen sind (weitgehend) publikationsreife Tabellen und oder Grafiken zu erzeugen.

Weitere Informationen

Graduate School UHH: Qualitative (rekonstruktive) Verfahren der Datenauswertung

Institution: Graduate School at Faculty of Economics and Social Sciences – University of Hamburg

Lecturer: Vertr.-Prof. Dr. Daniela Schiek

Schedule:
Einführungstermin: Fr., 13.11.15, 14:00 – 16:00 Uhr
Fr., 27.11.15, 10:00 – 16:00 Uhr
Sa., 28.11.15, 10:00 – 16:00 Uhr
Fr., 11.12.15, 10:00 – 16:00 Uhr
Sa., 12.12.15, 10:00 – 16:00 Uhr

Place: University of Hamburg, Von Melle Park 5

Registration: Anmeldungen sind ab sofort bis zum 15.10.2015 (13:00 Uhr) über Geventis möglich.

Course description:
In dieser Veranstaltung soll (eigenes) Fallmaterialgemeinsam ausgewertet werden, wobei hermeneutische Einzelfallrekonstruktionenund fallkontrastierende Kodier-Verfahren (Grounded Theory) angewendet werden.In einer Einführungssitzung werden spezifische Fragen, Vorgehen im Workshopsowie dessen (individuelle) Vorbereitung besprochen und miteinander abgestimmt.

Weitere Informationen

Graduate School UHH: Stochastic Dynamic Programming

Institution: Graduate School at Faculty of Economics and Social Sciences – University of Hamburg

Lecturer: Prof. Dr. Olaf Posch

Schedule:
Friday, 16.10.15 – Friday, 18.12.15
weekly 09:00 – 12:00

Place: University of Hamburg, Von Melle Park 9

Registration: You can register for the course until 15.10.2015 (13:00) via Geventis.

Course description:
Course objective. This course provides a toolbox for solving dynamic optimization problems in stochastic macroeconomic models. In particular, we briefly review optimal control theory and dynamic programming. We then thoroughly study models in discrete time and continuous time under uncertainty. The optimization problems are illustrated by various examples of dynamic stochastic general equilibrium (DSGE) models.

Course outline.
Part I: Basic mathematical tools
(i) Control theory (maximum principle, Euler equation, transversality condition)
(ii) Dynamic programming (Bellman equation, envelope theorem, multiple variables)
(iii) An example: Lucas’ model of endogenous growth
Part II: Stochastic models in discrete time
(i) Stochastic control problems
(ii) Analyzing equilibrium dynamics
(iii) An example: Real business cycles (RBC)
(iv) An example: A new Keynesian model for monetary analysis
(v) Solving dynamic equilibrium models with Dynare
Part III: Stochastic models in continuous time
(i) Stochastic differential equations and rules for differentials (Itˆo’s formula)
(ii) An example: Merton’s model of growth under uncertainty
(iii) Stochastic dynamic control problems (Bellman equation)
(iv) An example: Continuous-time RBC (under Gaussian and/or Poisson uncertainty)
(v) An example: The matching approach to unemployment
(vi) An example: Walde’s model of endogenous growth cycles

Reading list. Sydsæter, Hammond, Seierstad, and Strøm (2008, chap. 4-12, 290 pages), Chang (2004, chap. 4, 50 pages), Walde (2012), various articles suggested as complementary material during the course

References
Chang, F.-R. (2004): Stochastic optimization in continuous time. Cambridge Univ. Press.
Sydsæter, K., P. Hammond, A. Seierstad, and A. Strøm (2008): Further Mathematics for Economic Analysis. Prentice Hall.
Walde, K. (2012): Applied Intertemporal Optimization. Lecture Notes, Gutenberg University Mainz, http://www.waelde.com/aio.

Further information

Graduate School UHH: Zugang zu amtlichen Daten – Arbeiten mit dem Mikrozensus

Institution: Graduate School at Faculty of Economics and Social Sciences – University of Hamburg

Lecturer: Dr. Hans-Ullrich Mühlenfeld (FDZ Düsseldorf)

Schedule: Mo., 28.09.15, 09:00 – 15:00 Uhr

Place: University of Hamburg, Von Melle Park 9

Registration: Anmeldungen sind ab sofort bis zum 10.09.2015 (13:00 Uhr) über Geventis möglich. Nach der Anmeldefrist erfolgt eine manuelle Platzvergabe.

Course description:
Ablauf

  • Zugang zu amtlichen Daten / Vorstellung Forschungsdatenzentrum– FDZ
  • Vorstellung Mikrozensus
  • Übung zum MZ
  • Freie Übung mit dem MZ (z.B. Forschungsfragen aus dem Publikum)

Weitere Informationen

Graduate School UHH: Behavioral Political Economics

Institution: Graduate School at Faculty of Economics and Social Sciences – University of Hamburg

Lecturer: Prof. Dr. Dr. Lydia Mechtenberg

Schedule:
Thursday, 22.10.15 – Thursday, 28.01.16
every two week 10:00 – 13:00

Place: University of Hamburg, Von Melle Park 9

Registration: You can register for the course until 30.09.2015 (13:00) via Geventis.

Course description:
Topics: This course offers a new perspective on Political Economics by informingthe latter field with insights from Behavioral Economics. Political Economicstraditionally analyses social choice, voting, lobbying, political institutionsand government behavior under standard assumptions. Behavioral Economics, bycontrast, identifies open puzzles in Political Economics and explains them withthe help of insights from Behavioral Economics, like bounded rationality(illusion of control, incorrect probability judgments, limited memory etc.) andsocial and / or procedural preferences. These new theories are tested in thelab.

Method: Students present and discuss recent research in BehavioralPolitical Economics in class and provide a “referee report” on a related paper.

Aim: The goal of this course is twofold. First, students will become“competent consumers” of the literature in Behavioral Economics. Second, theywill be enabled to develop a research project in this field that may becomepart of their dissertation.

Organization: A reading list will be provided by the beginning of October. Inthe first session on class, I will shortly present the papers, and the studentswill choose what to present and what paper to write a report on. Then, we willmeet every other week for the presentation and discussion of the literature.

Requirements: PhD Students who want to participate must have taken some coursein Behavioral or Experimental Economics. The class is open to advanced Masterstudents.

Further information

Graduate School UHH: Science in R: Utilizing R for Scientific Research

Institution: Graduate School at Faculty of Economics and Social Sciences – University of Hamburg

Lecturer: Dr. Daniel R. Hawes

Schedule:
Thursday, 13.10.15 – Thursday, 26.01.16
Weekly 10:00 – 12:00

Place: University of Hamburg, Von Melle Park 9

Registration: You can register for the course until 30.09.2015 (13:00) via Geventis.

Course description:
R is a statistical computing environment. Mastering the R language means becoming proficient in state-of-the art software used to organize, understand, and explain data. R is a freely available open-source program, and is increasingly used in academia as well as industry: Indeed, mid through 2015, R stands as the world’s 6th most used programming language (not just statistics!) [ see: IEEEspectrum.org ].

R is powerful, flexible, and rapidly advancing. This progress results in large parts from the activity of a dynamic and active community of developers, statisticians, and scientists who work with data. As a byproduct, social science PhD students who become proficient in R will not only find their elementary scientific computing needs met within a single programming language, but will simultaneously benefit from generously available online support regarding many questions that arise while learning to code and to generally “work with data”.

The goal for this seminar is to equip graduate students with a bird’s-eye view of the global R environment. This means that students will learn the larger landscape of tools that exist in R and be introduced to how these tools can be utilized to efficiently streamline data-aspects of scientific research.

No prior knowledge of R is required. Several homework sets will be provided from which students can develop familiarity with basic R syntax, and a brief introduction to R and RStudio will be covered at the beginning of the course. The course is not a statistics course, and lessons will emphasize the development of a general overview regarding powerful data handling tools available in R and how to utilize these in research.

Of central importance to the course will be the treatment of relatively new R packages for handling data (e.g. dplyr & magrittr), packages to create nifty graphics (ggplot2 & ggvis), as well as various tools that assist in proper documentation and convenient presentation of analysis (e.g. tidyr, knitr, & shiny).

The course is conceived as a graduate seminar for credit. Students from the Social Sciences, Psychology, and Economics are primarily addressed, moreover, intended participants should be actively engaged in ongoing research. Students will be given the opportunity to present on particular features of R, relevant to their field.

Further information

Graduate School UHH: Applied Macroeconometrics

Institution: Graduate School at Faculty of Economics and Social Sciences – University of Hamburg

Lecturer: Prof. Dr. Ulrich Fritsche

Schedule:
Thursday, 14.01.16, 14:00-18:00
Friday, 15.01.16, 10:00-18:00
Thursday, 21.01.16, 14:00-18:00
Friday, 22.01.16, 10:00-18:00

Place: University of Hamburg, Von Melle Park 9

Registration: You can register for the course until 30.11.2015 (13:00) via Geventis.

Course description:
Roadmap:

1. Basics: Difference Equations, Solutions, Lag Operators
2. Stationary Time-Series Models: ARMA (p,q), ACF/PACF, Box-Jenkins
3. Identification Problems in Macroeconometrics
4. Models with Trend: Dickey-Fuller-Test, Structural Change, Panel Unit Root tests
5. Cointegration and Error-Correction Models
6. Some Non-linear Time-Series Models

Students will be enabled to apply macroeconometric techniques to a variety of cases. Students are encouraged to bring their own problems and data sets to analyze them in the course. Students will be enabled to use the software RATS.

The course is a mixture of lectures, practical exercises and programming RATS code and own empirical work.

Basic References:

@1: Enders (2010), ch. 1; Kirchgässner, Wolters (2007), ch. 1.
@2: Enders (2010), ch. 2; Kirchgässner, Wolters (2007), ch. 2.
@3: Favero (2001), ch. 3, ch. 4, ch. 6; Kirchgässner, Wolters (2007), ch. 4; Enders (2010)3, ch. 5.
@4: Enders (2010), ch. 4; Kirchgässner, Wolters (2007), ch. 5.
@5: Enders (2010), ch. 6; Kirchgässner, Wolters (2007), ch. 6.
@6: Enders (2010), ch. 7.

Books:

Walter Enders (2010): Applied Econometric Time Series, 3rd edition, Wiley.
Carlo A. Favero (2001): Applied Macroeconometrics, Oxford University Press.
Gebhard Kirchgässner, Jürgen Wolters (2007): Introduction to Modern Time Series Analysis, Springer.

RATS: www.estima.com

Students will work on empirical projects (either own projects or tasks defined in the course). A written documentation of the empirical project will be graded.

Further information

Graduate School UHH: MAXQDA Complete: Transkription, Datenaufbereitung und computergestützte Auswertung

Institution: Graduate School at Faculty of Economics and Social Sciences – University of Hamburg

Lecturer: Thorsten Dresing hat in Marburg Pädagogik und Soziologie studiert und an der Philips-Universität Marburg zum Thema „Entwicklung und Evaluation eines hybriden Onlineseminars zur Textanalyse“ promoviert. Hauptberuflich ist er geschäftsführender Gesellschafter der dr. dresing & pehl GmbH – audiotranskription.de und entwickelt die Transkriptions- und QDA-Software f4 und f4analyse. Freiberuflich ist er seit 14 Jahren Dozent für qualitative Sozialforschung mit dem Fokus auf f4, MAXQDA und qualitativer Inhaltsanalyse.

Schedule:
Do., 19.11.15, 09:00 – 15:30 Uhr
Fr., 20.11.15, 09:00 – 15:00 Uhr

Place: University of Hamburg, Von Melle Park 9

Registration: Anmeldungen sind ab sofort bis zum 15.10.2015 (13:00 Uhr) über Geventis möglich.

Course description:
In diesem Kurs erhalten Sie eine vertiefte Einführung in die Transkription von Interviews, die Aufbereitung anderer Datenarten für und den Umgang mit dem qualitativen Datenanalyseprogramm MAXQDA. Der Fokus des Kurses liegt, neben dem Codieren und Arbeiten mit Memos, auf der Umsetzung von mixed methods Ansätzen im Rahmen wissenschaftlicher Forschungsprojekte. Dieser Kurs vermittelt, welche Funktionen MAXQDA offeriert und wie sich diese im Forschungsprozess für unterschiedlich methodische Vorgehensweise sinnvoll und pragmatisch einsetzen lassen. Es werden Fragen beantwortet wie:

  • Wie verschrifte ich meine Interviews regelgeleitet und synchronisiere die
    Aufnahmen mit den Transkripten?
  • Wie entwickle ich ein Kategoriensystem induktiv oder deduktiv, ordne Textstellen
    passend zu und differenziere das Codesystem aus?
  • Wie nutze ich Memos als Forschungswerkzeug sinnvoll für Interpretationsansätze,
    Case Summarys, Ankerbeispiele, Definitionen und Theorieideen?
  • Wie kann ich meine Analysedurchgänge mit dem Text-Retrieval und Suchwerkzeug
    gestalten und ggf. interessante Passagen automatisch codieren?
  • Wann helfen Variablen bei der qualitativen Datenanalyse und wie lassen sich
    selektive Aussagen von bestimmten Personengruppen herausfiltern, um sie bspw. zu
    kontrastieren?
  • Wie visualisiere ich meine Daten für die Auswertungsphase und den
    Ergebnisbericht?
  • Wie gestalte ich die Arbeit im Team?

Zielgruppe: Dieser Workshop richtet sich an Studierende, Promovierende und ProjektmitarbeiterInnen aus den sozialwissenschaftlichen Disziplinen sowie an alle, die sich für die Auswertung qualitativer Daten interessieren. Vorkenntnisse zu MAXQDA werden nicht vorausgesetzt.

Weitere Informationen

VHB-ProDok: Behavioral Decision Making in Business Research (24.-27.09.2015)

Part of business research is moving away from the assumption of homo economicus and rational decision making. Consequently, decision making of consumers, investors, managers, entrepreneurs etc. is now often modelled differently than it has been only few years ago. Whereas applying approaches of normative decision theory has been the standard and still is in some fields, many researchers are now taking into account replicable and systematic features of actual behavior that are underlying the models of behavioral decision and game theory.

After this course, participants will understand this shift in paradigm, know the basic approaches of behavioral decision and game theory, will be able to understand research papers in those fields, and will be able to develop research ideas in their fields of interest, based on behavioral approaches.

Date of Event: 24. – 27. September 2015

Location:
Harnack-Haus, Berlin
Ihne-Str. 16-20
14195 Berlin
www.harnackhaus-berlin.mpg.de

Speaker: Christian D. Schade (Humboldt-Universität zu Berlin)

Registration: Please send your registration by Email to doktorandenprogramm(at)vhbonline(dot)org.

Further information

VHB-ProDok: Mediation and Moderation Analysis: Exploring Intervening and Interaction Effects in Empirical Research (15-18.09.2015)

This course covers two important concepts in empirical social science research: Mediation/intervening effects (the “how” and “why” of cause and effect relations) and moderation/interaction effects (the “when” of cause and effect relations). Both concepts as well as combinations of them (“conditional processes”) will be applied in the context of linear/nonlinear regression models and structural equation models with latent variables.

Date of Event: 15. – 18. September 2015

Location:
Bergische Universität Wuppertal
Schumpeter School of Business and Economics
Room: K.11.07
Gaußstr. 20
42119 Wuppertal

Speaker: Dirk Temme (Bergische Universität Wuppertal)

Registration: Please send your registration by Email to doktorandenprogramm(at)vhbonline(dot)org.

Further information