Category Archives: IRWS

International Research Workshop

Data Analysis with R

Institution: see Organisers & Supporters

Programme of study: International Research Workshop

Lecturer: Dr. Marco Lehmann (UKE Hamburg)

Date: see Workshop Programme

Max. number of participants: 20

Credit Points: 5 CP for participating in the whole IRWS

Language of instruction: English

Contents: The course introduces the programming language R used for statistical analyses. The beginning of each lecture comes with a demonstration of programming and statistical functions that will be elaborated in the course of study. The students will then practice with many statistical examples. In addition to statistical functions, the course will introduce the definition of R as a programming language and its syntax rules. Students will further learn to use R’s scripting capabilities. Successful participation requires basic knowledge of descriptive and inferential statistics. The students are encouraged to bring their own laptops with the free software R (www.r-project.org/) and RStudio (www.rstudio.com/) installed.

A requirement of students: Basic knowledge in descriptive and inferential statistics is recommended.

Recommended literature and pre-readings:

  • Matloff, N. (2011). The Art of R Programming: A Tour of Statistical Software Design. No Starch Press.
  • Wollschläger, Daniel (2012). Grundlagen der Datenauswertung mit R (2. Aufl.). Berlin: Springer.

You have to register for the International Research Workshop to participate in this course.

Writing Your Literature Review

Institution: see Organisers & Supporters

Programme of study: International Research Workshop

Lecturer: Paul Vickers (University of Regensburg)

Date: see Workshop Programme

Max. number of participants: 20

Credit Points: 5 CP for participating in the whole IRWS

Language of instruction: English

Contents: All research, whatever the discipline and however original, draws on existing studies. Any research project necessarily positions itself in relation to existing empirical, theoretical and methodological debates. This course provides practical insight and advice on how to write a literature review (Forschungsstand) providing an overview of the “state of the art”. The course will begin with insights on tips, tricks and tactics for tackling the literature review, including collecting and synthesizing literature, summarizing existing debates, and providing advice on academic writing in English. The sessions will also involve group work and focused feedback on individual projects.

There are no pre-readings for the course. Some general handbooks that are useful are listed below. However, I would require that each participant sends us at least one week in advance of the course an extended abstract (Exposé in English or German) of their research project.

  • Patrick Dunleavy. How to Plan, Draft, Write and Finish a Doctoral Thesis or Dissertation. Palgrave: 2003.
  • Jose L. Galvan. Writing Literature Reviews: A Guide for Students of the Social and Behavioral Sciences. University of Michigan: 2004.
  • Ansgar Nünning/Roy Sommer, Hrsg. Handbuch Promotion. Forschung – Förderung – Finanzierung. Metzler: 2007.

You have to register for the International Research Workshop to participate in this course.

Grounded Theory

Institution: see Organisers & Supporters

Programme of study: International Research Workshop

Lecturer: Dr. Gilberto Rescher (University of Hamburg)

Date: see Workshop Programme

Max. number of participants: 20

Credit Points: 5 CP for participating in the whole IRWS

Language of instruction: English

Contents: The purpose of this workshop is to offer a comprehensive introduction to Grounded Theory considering its use in manifold kinds of fields and contexts of study and the feasibility of combining it with diverse research techniques (mainly qualitative and ethnographic ones). The workshop is as much oriented to “beginners” interested in learning about the basic epistemological perspective of Grounded Theory and its practice, as to participants that already possess deeper knowledge about Grounded Theory or even have employed this methodology in research and wish to discuss specific aspects or questions that arose in research practice. Correspondingly, the workshop will be adjusted to the participants needs.

Hence, we will discuss basic concepts and procedures like research design, data collection, coding, categorizing, writing memos, theoretical sampling and theoretical saturation. Then exercises based on examples, ideally those attributed buy participants, will be employed to clarify these concepts by putting them into practice. Therefore participants with concrete research projects (be it planned or already put in practice) are invited to share their ideas, design and material, with the aim to (further) develop research practices among the group. If you are interested in presenting examples, please contact Gilberto Rescher in English or German (gilberto.rescher@uni-hamburg.de). Apart of this the lecturer will stress upon his own research experiences to show how he actually uses Grounded Theory as an important kind of guideline in a broader methodological setting.

In addition to your registration please answer the following questions (English or German):

  • What is your current status (e.g. PhD student?)
  • What is the focus of your interest in Grounded Theory?
  • What sort of content and what feedback do you expect?

You have to register for the International Research Workshop to participate in this course.

Qualitative Research Methods

Institution: see Organisers & Supporters

Programme of study: International Research Workshop

Lecturer: Dr. Fabian Hattke (Universität Hamburg)

Date: see Workshop Programme

Max. number of participants: 20

Credit Points: 5 CP for participating in the whole IRWS

Language of instruction: English

Contents: The purpose of this course is to familiarize participants with the basic characteristics of qualitative research. The course introduces methodological and practical aspects of different forms of qualitative research like case studies, discourse analyses, interviews, observations, and qualitative meta-syntheses. The course covers a variety of issues, including the philosophy of science, research designs, theory building, and sampling strategies. It also discusses practical challenges like the development of research questions, the use of different coding approaches, technical tools, and ethical questions.

Recommended literature and pre-readings:

  • Adler, P. S., Forbes, L. C., & Willmott, H. (2007). Critical management studies. Academy of Management Annals, 1(1), 119-179.
  • Alvesson, M., & Karreman, D. (2000). Varieties of discourse: On the study of organizations through discourse analysis. Human Relations, 53(9), 1125-1149.
  • Corbin, J., & Strauss, A. (2014). Basics of qualitative research: Techniques and procedures for developing grounded theory. Sage publications.
  • Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Management Review, 14(4), 532-550.
  • Flick, U., von Kardoff, E., & Steinke, I. (Eds.). (2004). A companion to qualitative research. Sage.
  • Hoon, C. (2013). Meta-synthesis of qualitative case studies: An approach to theory building. Organizational Research Methods, 16(4), 522-556.
  • Mayring, P. (2004). Qualitative content analysis. A companion to qualitative research. Forum: Qualitative Social Research, 1, 159-176.
  • Sandelowski, M., & Barroso, J. (2006). Handbook for synthesizing qualitative research. Springer Publishing.
  • Wodak, R., & Meyer, M. (Eds.). (2015). Methods of critical discourse studies. Sage.
  • Yin, R. K. (2017). Case study research and applications: Design and methods. Sage publications.

You have to register for the International Research Workshop to participate in this course.

Data Analysis with Stata

Institution: see Organisers & Supporters

Programme of study: International Research Workshop

Lecturer: Tobias Gramlich, Hesse State Statistical Office

Date: see Workshop Programme

Max. number of participants: 20

Credit Points: 5 CP for participating in the whole IRWS

Language of instruction: English

Contents: Stata is a statistical program package widely used (not only) in the social and economic sciences; it is used for data management, statistical graphics and analysis of quantitative data. Statistical concepts will not be part of the course, so participants should have some very basic knowledge of statistics. The course should enable participants to prepare their data for analysis, perform adequate analysis using a statistical computer program and document these tasks to keep them reproducible.

For Beginners with no or very little Stata knowledge!

Course topics cover:

  • “What You Type Is What You Get”: Basic Stata Command syntax
  • Getting (and Understanding) Help within Stata: Stata Built-in Help System
  • Basic Data Management: Load and Save Stata Datasets, Generate and Manipulate Variables, Describe and Label Data and Variables, Perform Basic uni- and bivariate Analyses, Change the Structure of your Data
  • Basic Stata Graphics: Scatterplot, Histogram, Bar Chart
  • Working with “Do-” and “Log-” Files

A requirement of students: Statistical concepts will not be part of the course, so participants should have some very basic knowledge of statistics.

Recommended literature and pre-readings: None.

You have to register for the International Research Workshop to participate in this course.

REMINDER: 13th International Research Workshop – Methods for PhD – 15–20 September 2019: Registration Open Now!

Akademie Sankelmark, Flensburg (Germany) http://www.phd-network.eu/irws/programme/ PROGRAMME PARALLEL MORNING SESSION 1 (16 – 18 September 2019)
  • Data Analysis with Stata Tobias Gramlich, Hesse State Statistical Office
  • Qualitative Interviewing Dr. Sarah Potthoff, Ruhr-University Bochum
  • Grounded Theory Dr. Christine Moritz, Feldpartitur GmbH
  • Introduction to Survival Analysis Andrea Schaefer, University of Bremen
  • Writing your Literature Review Prof. Dr. Katharina Stornig, Justus-Liebig-University Gießen
PARALLEL AFTERNOON SESSION 2 (16 – 18 September 2019)
  • Data Analysis with R Dr. Marco Lehmann, UKE Hamburg
  • Analysing Panel and Spatial Data Prof. Dr. Timo Friedel Mitze, University of Southern Denmark
  • Questionnaire Design Prof. Dr. Daniel Schnitzlein Leibniz University Hannover & DIW Berlin
  • Case Study Research Dr. Kamil Marcinkiewicz, University of Oldenbourg
  • Introduction to Data Mining and Quantitative Text Analysis with R Pascal Jürgens, Johannes Gutenberg-University Mainz
PARALLEL SESSION 3 (19 September 2019)
  • Philosophies of Sciences Prof. Dr. Jaime Bonache, Carlos III University of Madrid
  • Qualitative Comparative Analysis (QCA) Dr. Jonas Buche, Leibniz University Hannover
  • Measuring Preferences using Conjoint Analytic Methods and Advanced Compositional Approaches Prof. Dr. Martin Meissner, University of Southern Denmark
  • Necessary Condition Analysis Prof. Dr. Sven Hauff, Helmut-Schmidt-University
  • Multi-level Modelling with R Dr. Daniel Lüdecke, UKE Hamburg
WORKSHOP COMMITTEE:
  • Wenzel Matiaske, Helmut-Schmidt-University
  • Simon Fietze, University of Southern Denmark
  • Heiko Stüber, Institute for Employment Research
FEES & CREDIT POINTS 499 Euro (with accommodation and meals) 299 Euro (without accommodation; lunch and dinner are included) It is possible to get a certificate on 5 credit points (according to the European Credit Transfer System). CONTACT & REGISTRATION For any questions don’t hesitate to contact the workshop committee (irwsnetwork@gmail.com). Please register for the workshop on the workshop website. ORGANIZERS
  • Helmut-Schmidt-University/University of the FAF Hamburg, Faculty of Economics and Social Sciences
  • Institute for Employment Research (IAB), The Research Institute of the Federal Employment Agency in Nuremberg
  • Akademie Sankelmark im Deutschen Grenzverein e.V.
SUPPORTERS
  • Europa-Universität Flensburg
  • University of Hamburg, Faculty of Economics and Social Sciences
  • University of Hamburg, School of Business
  • Leuphana University Lüneburg, Faculty of Economics
  • Werkstatt für Personal- und Organisationsforschung e.V.

Qualitative Comparative Analysis (QCA)

Institution: see Organisers & Supporters

Programme of study: International Research Workshop

Lecturer: Dr. Jonas Buche, Leibniz University Hannover

Date: see Workshop Programme

Max. number of participants: 20

Credit Points: 5 CP for participating in the whole IRWS

Language of instruction: English

Contents: Since the publication of the seminal work “The Comparative Method” by Charles Ragin in 1987, set-theoretic methods and especially Qualitative Comparative Analysis (QCA) have become a common research strategy in the social sciences. Set-theoretic methods analyse cases with regard to the identification of sufficient and necessary conditions and assume set relations to be equifinal, conjunctural and asymmetric. Not least since so-called fuzzy sets have been introduced to the method, there has been a rising interest in QCA as a welcome alternative to both small-n case studies and large-n statistical analyses. In short, QCA is recommended if ‘if…then’ hypotheses are analysed; if the goal is to derive sufficient and necessary conditions; if a comparison is planned; and if there is a mid-sized number of cases (between 10 and 60+).

The course offers a comprehensive introduction to QCA and is both conceptually and technically oriented. It starts off with an overview of the basics of set theory and demarcates QCA as a case-oriented method from both the quantitative and the interpretive-qualitative research paradigm. Through the notion of necessary and sufficient conditions and of truth tables, the single elements are built into the Truth Table Algorithm. However, this algorithm is not free of problems. Therefore, some pitfalls and strategies on how to overcome them are presented. On the third day, the software tool fsQCA will be introduced and applied to published studies.

Requirement of students: No prior knowledge is required. We will use the software fsQCA2.5 which can be downloaded at www.fsqca.com.

Recommended literature and pre-readings:

Buche, Jonas. 2017. “Assessing the Quality of Qualitative Comparative Analysis (QCA) – Evaluation, Improvement, Application”. Hannover: Leibniz Universität (https://www.researchgate.net/publication/323749578_Assessing_the_Quality_of_Qualitative_Comparative_Analysis_QCA_Evaluation_Improvement_Application)

Cebotari, Victor, and Maarten P. Vink (2013). “A Configurational Analysis of Ethnic Protest in Europe.” International Journal of Comparative Sociology, Vol. 54(4), 298-324.

Schneider, Carsten Q./Wagemann, Claudius, 2012. Set-Theoretic Methods for the Social Sciences. A Guide to Qualitative Comparative Analysis. Cambridge: Cambridge University Press.

You have to register for the International Research Workshop to participate in this course.

Multi-level Modelling with R

Institution: see Organisers & Supporters

Programme of study: International Research Workshop

Lecturer: Dr. Daniel Lüdecke (UKE Hamburg)

Date: see Workshop Programme

Max. number of participants: 20

Credit Points: 5 CP for participating in the whole IRWS

Language of instruction: English

Contents: The course teaches how to fit multilevel regression models with the statistical programming language R. First, simple (generalized) linear regression models are introduced to show important basic principles of modelling, like simple regression, interaction terms, non-linear relationships between predictors and outcome (polynomial and spline terms). Later, the application of these principles in a multilevel framework are demonstrated. Furthermore, graphical representation of complex mixed models is covered that help communicate complicated models in a simple way even for a broad audience that is less familiar with such modelling techniques. Successful participation requires basic knowledge of regression modelling techniques. Students are encouraged to bring their own laptops with the free software R (www.r-project.org/) and RStudio (www.rstudio.com/) installed. All source code to run the examples is provided in preparation to the course.

Requirements: Basic knowledge of regression modelling (familiarity with terms like dependent and independent variables, linear and logistic regression, estimate, …)

Recommended readings:

Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E. D., … Inger, R. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ, 6, e4794. https://doi.org/10.7717/peerj.4794

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J.-S. S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24(3), 127–135. https://doi.org/10.1016/j.tree.2008.10.008

Required R packages:

  • Modelling: lme4, glmmTMB, GLMMadaptive
  • Visualization: ggeffects, sjPlot
  • Model Quality: performance
  • Data preparation: sjmisc, dplyr, tidyr

Run install.packages(c(“lme4”, “glmmTMB”, “performance”, “GLMMadaptive”, “ggeffects”, “sjPlot”, “sjmisc”, “dplyr”, “tidyr”), dependencies = TRUE) to install the relevant packages.

You have to register for the International Research Workshop to participate in this course.

Analysing Panel and Spatial Data

Institution: see Organisers & Supporters

Programme of study: International Research Workshop

Lecturer: Assoc. Prof. Dr. Timo Friedel Mitze (University of Southern Denmark)

Date: see Workshop Programme

Max. number of participants: 20

Credit Points: 5 CP for participating in the whole IRWS

Language of instruction: English

Contents: The course is divided into two modules:

Part 1) Panel Data Analysis: The first module of the course is organized as a (basic!) introduction to the use of panel data in the different fields of business and social sciences. It is not meant as an expert course in advanced panel data modelling. The main goal is thus to provide insights into why and when applied researchers can benefit from working with panel data, i.e. the combination of cross-sectional and time-series data. The course provides course participants with an overview of the different types of (micro and macro) models that are available for panel data estimation and shows how to properly estimate these models with the help of the statistical software package STATA. Building on these basics, an outlook on more advanced panel data models will be given.

Part 2): Spatial Data Analysis: In the second module course participants will learn to use graphical and statistical tools to visualize and estimate models, in which spatial interaction places an important role. Besides presenting the general logic of spatial modeling approaches, a strong focus lies on illustrating the potential for applied work with these tools in the software package STATA. The module is structured as follows: After a brief introduction, different research settings in business and social sciences are outlined, which may call for the explicit use of spatial estimation techniques, for instance, in order to identify the importance of network and neighborhood effects. This is followed by some practical applications on how to measure and visualize the degree of spatial dependence in variables. The module then introduces course participants into the field of spatial econometrics and students can work with hands-on applications on the basis of different data sets. Finally, a link to spatial panel data models will be given to close the course.

Course Tools: Please bring your laptop computer. STATA can be installed in the beginning of the IRWS. Licenses will be provided. Datasets and STATA ado-files will be provided ahead of the course and should be installed on the participants’ computers. Introductory readings will be provided to registered participants approx. 4-6 weeks ahead of the course (see examples).

Basic requirements: Basic knowledge in econometrics; basic knowledge in STATA (e.g. online tutorial: https://www.youtube.com/watch?v=QaI_a_l2jqo)

Exemplary Readings

Baltagi, B. Econometric Analysis of Panel Data. 3 rd or higher edition, Wiley.

LeSage, J. Pace, K. Introduction to Spatial Econometrics. CRC Press.

Philosophies of Science

Institution: see Organisers & Supporters

Programme of study: International Research Workshop

Lecturer: Prof. Dr. Jaime Bonache (Universidad Carlos III de Madrid and Permanent Visiting Professor at ESADE Business School in Barcelona, Spain)

Date: see Workshop Programme

Max. number of participants: 15

Credit Points: 5 CP for participating in the whole IRWS

Language of instruction: English

Contents: By one widely held conception, Philosophy of Science is the attempt to understand the meaning, method, and logical structure of science by means of a logical and methodological analysis of the aims, methods, criteria, concepts, laws, and theories of science. It is thus an attempt to get a clear understanding of what science is and what is not. The major goal of this course is to provide students that understanding.

We would like to stress that this is an introductory course in Philosophy of Science. Our principles of selection of the topics included have been these: The selection should be intrinsically interesting. It should be relevant and comprehensible to a beginning student. It should serve to provoke discussion and criticism. We have also tried to relate the topics to current philosophical and methodological debates in the management area.

  1. INTRODUCTION
    a. The nature of management research
    b. (Two basic) Philosophical Positions in
    Management Research: Positivism and Interpretivism
  2. THE POSITIVIST APPROACH
    c. Positivism and Post-positivism
    d. Positivist research traditions in Management
    i. Theory Testing Research
    ii. Theory Building/Elaboration Research
    e. Evaluating Research Contributions in the Positivist tradition
    f. Some problems of positivism
  3. THE INTERPRETIVE APPROACH
    g. Phenomenology, Hermeneutics and its predecessors
    h. Comparing positivist and interpretive research contributions
    i. Evaluating research in the Interpretive Tradition
    j. Is interpretivism compatible with positivism?

The assigned readings are the following:

Bansal, P, Smith,W. and Vaara E. (2018): “New ways of seeing through qualitative research, Academy of Management Journal, Vol. 61 (4): 1189-1195.

Bonache. J and Zarraga, C. (2019): Compensating International Mobility in a Worker’s Cooperative: An interpretive study, Journal of World Business, in press

Lee, A. S. (1991). Integrating positivist and interpretive approaches to organizational research. Organization science, 2(4), 342-365.

Basic Bibliography:

Aguinis, H., & Solarino, A. M. 2019. Transparency and replicability in qualitative research: The case of interviews with elite informants. Strategic Management Journal. https://doi.org/10.1002/smj.3015

Alvesson, M., & Sandberg, J. (2011). Generating research questions through problematization. Academy of management review, 36(2), 247-27,1

Benton, T. (2001). Philosophy of social science: The philosophical foundations of social thought, McMilllan International.

Gibbert, M., Ruigrok, W., & Wicki, B. (2008). What passes as a rigorous case study?. Strategic management journal, 29(13), 1465-1474.

Kuhn, T. (1996): The Structure of Scientific Revolutions, 3rd Edition (First Edition 1962), The University of Chicago Press

Popper, K. (1963): “Science: Conjectures and Refutations.” From Conjectures and Refutations, pp. 33-41, 52-59. New York: Harper and Row

Rosenberg, A. (2011). Philosophy of science: A contemporary introduction. Routledge.

Sanders, P. (1982). Phenomenology: A new way of viewing organizational research. Academy of management review, 7(3), 353-360.

Sandberg, J. (2005). How do we justify knowledge produced within interpretive approaches?. Organizational research methods, 8(1), 41-68.

You have to register for the International Research Workshop to participate in this course.