Institution: Helmut-Schmidt-University Hamburg/Syddansk Universitet, Sønderborg (SDU), Denmark
Lecturer: Prof. Martin Meißner, Department of Environmental and Business Economics, SDU
Date: 01.12.2016, 09:00-17:00 (incl. breaks)
Place: Helmut-Schmidt-Universität, Holstenhofweg 85, 22043 Hamburg, Aula-Gebäude, Raum 3
Language of instruction: English
Registration: Non-members of the Helmut-Schmidt-Universität may click here firstly to create an HSU-Ilias-account, and secondly here to join the course.
Contents:
The participants of this course develop a sound understanding of the benefits of using conjoint analytic preferences measurement approaches and alternative advanced compositional approaches. Participants gain practical experience of using conjoint-analytic methods, and develop a better understanding of the value of measuring preferences.
The course starts with introducing the basic concepts behind the measurement of stated preferences, specifically focusing on conjoint analysis. The most often used approaches, i.e. traditional conjoint analysis, adaptive conjoint analysis and choice-based conjoint analysis are introduced. We deliberate on advantages and disadvantages of the approaches and also discuss advanced compositional approaches, like pairwise-comparison based preference measurement and the adaptive self-explicated approach. During the workshop we will further talk about all the important stages of designing a preference measurement study. We pay special attention to the types of research questions that conjoint analysis can answer. We also discuss the most important questions you should answer before setting up your preference measurement/conjoint study: What is the optimal choice of attributes and attribute level? What is a good experimental design? How should I design my survey design and present potential choice scenarios? How do I analyze the results?
Participants will have the opportunity to use Sawtooth Software on their own laptops and build their own conjoint analysis survey during the course. Based on this experience, participants will be able to improve the planning of their own future experiments.
Recommended literature and pre-readings:
- Bradlow, Eric T. (2005), “Current Issues and a ‘Wish List’ for Conjoint Analysis,” Applied Stochastic Models in Business and Industry, 21 (4-5), 319-323.
- Hauser, John R. and Vithala Rao (2003), “Conjoint Analysis, Related Modeling, and Applications,” in Advances in Marketing Research: Progress and Prospects, in Marketing Research and Modeling: Progress and Prospects, Wind, Jerry and Paul Green (eds.), New York: Springer, 141-168.
- Huber, Joel (1997), “What We Have Learned from 20 Years of Conjoint Research: When to Use Self-Explicated, Graded Pairs, Full Profiles or Choice Experiments,” Sawtooth Software Conference Proceedings, Sequim, WA., 243-256.
- Scholz, Sören W., Martin Meissner, and Reinhold Decker (2010), “Measuring Consumer Preferences for Complex Products: A Compositional Approach Based on Paired Comparisons,” Journal of Marketing Research, 47 (4), 685-698.