Author Archives: sfietze

VHB-ProDok: Philosophy of Science – Foundations and Implications for Research Designs and Research Methods (12.-15.11.2019)

Die wissenschaftstheoretische Analyse ist eine Grundlage für die Beurteilung eigener und fremder Forschungsleistungen. Während jedoch bei der Lektüre eines wissenschaftlichen Aufsatzes oder Monographie die eingesetzten Methoden, wie z.B. ein Fragebogen zur Erhebung von Daten oder eine Regressionsanalyse zur Auswertung von Daten, zu dokumentieren sind, wird die zugrunde liegende wissenschaftstheoretische Position häufig nicht einmal erwähnt. Wer sich jedoch mit Begründungsansprüchen wissenschaftlicher Forschung und ihrer Methoden auseinandersetzen will, kommt um eine Beschäftigung mit eben diesen Positionen nicht herum. Insbesondere bei mixed-method-Studien werden zudem solche Expositionen auch von Gutachtern und Journal-Editoren zunehmend eingefordert.

Ziel des Kurses ist es daher, die Teilnehmer mit den wesentlichen wissenschaftstheoretischen Strömungen und ihren für die Wissenschaft wesentlichen ontologischen und epistemologischen Positionen vertraut zu machen. Der Einstieg ins Thema erfolgt auf der Basis dreier Leitfragen im Rahmen eines „World Cafés“, die den Verlauf des Kurses strukturieren. Die Grundlagen der Wissenschaftstheorie werden von einem Dozenten vorgestellt und dienen einer gemeinsamen Diskussionsbasis für die verschiedenen Positionen. Anschließend werden die verschiedenen Strömungen der Wissenschaftstheorie und ihre wesentlichen Implikationen für die Forschungsmethoden und das Forschungsdesign durch die Teilnehmer präsentiert, wobei jeweils Themenschwerpunkte gebildet werden. Die individuellen Präsentationen dienen dann als Grundlage für die anschließende gemeinsame Diskussion und ggf. thematische Erweiterung durch die Dozenten.

Eine wesentliche Zielsetzung des Kurses ist es, für die verschiedenen Strömungen der Wissenschaftstheorie zu sensibilisieren und grundlegende Kenntnisse über verschiedene wissenschaftstheoretische Begründungsstrategien zu vermitteln, um eine kritische Reflektion über die eigene wissenschaftliche Forschung zu ermöglichen. Obwohl der Schwerpunkt des Kurses auf der Diskussion philosophischer (wissenschaftstheoretischer) Positionen liegt, ist es ein weiteres Anliegen des Kurses, deren Bedeutung für die wissenschaftliche Praxis zu thematisieren und anhand praktischer Beispiele zu analysieren.

Veranstaltungsdatum: 12. bis 15. November 2019


Prof. Dr. Rolf Brühl
ESCP Europe Business School Berlin

Prof. Dr. Thomas Wrona
Technische Universität Hamburg-Harburg


Um einen Überblick über die Höhe der Teilnahmegebühr zu erhalten und um sich anzumelden, nutzen Sie bitte diesen Link:

Sie können außerdem eine Email prodok(at)vhbonline(dot)org senden.

Weitere Informationen:

VHB-ProDok 1911MUE03 Syllabus.pdf

Content retrieved from:

Talking to the media: An introduction to science communication 06 December 2019 in Hamburg

Date: 06 December 2019 Hamburg

Time: 09:00 – 16:30

Location: Tutech Innovation GmbH, Harburger Schloßstraße 6-12, 21079 Hamburg

If you’ve made an important research breakthrough, other people should know about it. Of course your peers are important, but what about the wider world? The terms of your research funding may also require you to disseminate your results publicly. This workshop looks at how journalists work and at how to tell your story succinctly and clearly so that a non-specialist audience will understand you. It also covers press release writing, dealing with controversial issues and devising a media strategy and incorporates several hands-on practice sessions.
The workshop is designed for early-stage researchers, e.g. PhD candidates or postdocs; research project partners who are responsible for disseminating results.

The language of presentations will be English.

Click here for more Information.

Qualitative Comparative Analysis (QCA)

Institution: see Organisers & Supporters

Programme of study: International Research Workshop

Lecturer: Dr. Jonas Buche, Leibniz University Hannover

Date: see Workshop Programme

Max. number of participants: 20

Credit Points: 5 CP for participating in the whole IRWS

Language of instruction: English

Contents: Since the publication of the seminal work “The Comparative Method” by Charles Ragin in 1987, set-theoretic methods and especially Qualitative Comparative Analysis (QCA) have become a common research strategy in the social sciences. Set-theoretic methods analyse cases with regard to the identification of sufficient and necessary conditions and assume set relations to be equifinal, conjunctural and asymmetric. Not least since so-called fuzzy sets have been introduced to the method, there has been a rising interest in QCA as a welcome alternative to both small-n case studies and large-n statistical analyses. In short, QCA is recommended if ‘if…then’ hypotheses are analysed; if the goal is to derive sufficient and necessary conditions; if a comparison is planned; and if there is a mid-sized number of cases (between 10 and 60+).

The course offers a comprehensive introduction to QCA and is both conceptually and technically oriented. It starts off with an overview of the basics of set theory and demarcates QCA as a case-oriented method from both the quantitative and the interpretive-qualitative research paradigm. Through the notion of necessary and sufficient conditions and of truth tables, the single elements are built into the Truth Table Algorithm. However, this algorithm is not free of problems. Therefore, some pitfalls and strategies on how to overcome them are presented. On the third day, the software tool fsQCA will be introduced and applied to published studies.

Requirement of students: No prior knowledge is required. We will use the software fsQCA2.5 which can be downloaded at

Recommended literature and pre-readings:

Buche, Jonas. 2017. “Assessing the Quality of Qualitative Comparative Analysis (QCA) – Evaluation, Improvement, Application”. Hannover: Leibniz Universität (

Cebotari, Victor, and Maarten P. Vink (2013). “A Configurational Analysis of Ethnic Protest in Europe.” International Journal of Comparative Sociology, Vol. 54(4), 298-324.

Schneider, Carsten Q./Wagemann, Claudius, 2012. Set-Theoretic Methods for the Social Sciences. A Guide to Qualitative Comparative Analysis. Cambridge: Cambridge University Press.

You have to register for the International Research Workshop to participate in this course.

Multi-level Modelling with R

Institution: see Organisers & Supporters

Programme of study: International Research Workshop

Lecturer: Dr. Daniel Lüdecke (UKE Hamburg)

Date: see Workshop Programme

Max. number of participants: 20

Credit Points: 5 CP for participating in the whole IRWS

Language of instruction: English

Contents: The course teaches how to fit multilevel regression models with the statistical programming language R. First, simple (generalized) linear regression models are introduced to show important basic principles of modelling, like simple regression, interaction terms, non-linear relationships between predictors and outcome (polynomial and spline terms). Later, the application of these principles in a multilevel framework are demonstrated. Furthermore, graphical representation of complex mixed models is covered that help communicate complicated models in a simple way even for a broad audience that is less familiar with such modelling techniques. Successful participation requires basic knowledge of regression modelling techniques. Students are encouraged to bring their own laptops with the free software R ( and RStudio ( installed. All source code to run the examples is provided in preparation to the course.

Requirements: Basic knowledge of regression modelling (familiarity with terms like dependent and independent variables, linear and logistic regression, estimate, …)

Recommended readings:

Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E. D., … Inger, R. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ, 6, e4794.

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J.-S. S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24(3), 127–135.

Required R packages:

  • Modelling: lme4, glmmTMB, GLMMadaptive
  • Visualization: ggeffects, sjPlot
  • Model Quality: performance
  • Data preparation: sjmisc, dplyr, tidyr

Run install.packages(c(“lme4”, “glmmTMB”, “performance”, “GLMMadaptive”, “ggeffects”, “sjPlot”, “sjmisc”, “dplyr”, “tidyr”), dependencies = TRUE) to install the relevant packages.

You have to register for the International Research Workshop to participate in this course.

Analysing Panel and Spatial Data

Institution: see Organisers & Supporters

Programme of study: International Research Workshop

Lecturer: Assoc. Prof. Dr. Timo Friedel Mitze (University of Southern Denmark)

Date: see Workshop Programme

Max. number of participants: 20

Credit Points: 5 CP for participating in the whole IRWS

Language of instruction: English

Contents: The course is divided into two modules:

Part 1) Panel Data Analysis: The first module of the course is organized as a (basic!) introduction to the use of panel data in the different fields of business and social sciences. It is not meant as an expert course in advanced panel data modelling. The main goal is thus to provide insights into why and when applied researchers can benefit from working with panel data, i.e. the combination of cross-sectional and time-series data. The course provides course participants with an overview of the different types of (micro and macro) models that are available for panel data estimation and shows how to properly estimate these models with the help of the statistical software package STATA. Building on these basics, an outlook on more advanced panel data models will be given.

Part 2): Spatial Data Analysis: In the second module course participants will learn to use graphical and statistical tools to visualize and estimate models, in which spatial interaction places an important role. Besides presenting the general logic of spatial modeling approaches, a strong focus lies on illustrating the potential for applied work with these tools in the software package STATA. The module is structured as follows: After a brief introduction, different research settings in business and social sciences are outlined, which may call for the explicit use of spatial estimation techniques, for instance, in order to identify the importance of network and neighborhood effects. This is followed by some practical applications on how to measure and visualize the degree of spatial dependence in variables. The module then introduces course participants into the field of spatial econometrics and students can work with hands-on applications on the basis of different data sets. Finally, a link to spatial panel data models will be given to close the course.

Course Tools: Please bring your laptop computer. STATA can be installed in the beginning of the IRWS. Licenses will be provided. Datasets and STATA ado-files will be provided ahead of the course and should be installed on the participants’ computers. Introductory readings will be provided to registered participants approx. 4-6 weeks ahead of the course (see examples).

Basic requirements: Basic knowledge in econometrics; basic knowledge in STATA (e.g. online tutorial:

Exemplary Readings

Baltagi, B. Econometric Analysis of Panel Data. 3 rd or higher edition, Wiley.

LeSage, J. Pace, K. Introduction to Spatial Econometrics. CRC Press.

Philosophies of Science

Institution: see Organisers & Supporters

Programme of study: International Research Workshop

Lecturer: Prof. Dr. Dr. Jaime Bonache (Universidad Carlos III de Madrid and Permanent Visiting Professor at ESADE Business School in Barcelona, Spain)

Date: see Workshop Programme

Max. number of participants: 15

Credit Points: 5 CP for participating in the whole IRWS

Language of instruction: English

Contents: By one widely held conception, Philosophy of Science is the attempt to understand the meaning, method, and logical structure of science by means of a logical and methodological analysis of the aims, methods, criteria, concepts, laws, and theories of science. It is thus an attempt to get a clear understanding of what science is and what is not. The major goal of this course is to provide students that understanding.

We would like to stress that this is an introductory course in Philosophy of Science. Our principles of selection of the topics included have been these: The selection should be intrinsically interesting. It should be relevant and comprehensible to a beginning student. It should serve to provoke discussion and criticism. We have also tried to relate the topics to current philosophical and methodological debates in the management area.

    a. The nature of management research
    b. (Two basic) Philosophical Positions in
    Management Research: Positivism and Interpretivism
    c. Positivism and Post-positivism
    d. Positivist research traditions in Management
    i. Theory Testing Research
    ii. Theory Building/Elaboration Research
    e. Evaluating Research Contributions in the Positivist tradition
    f. Some problems of positivism
    g. Phenomenology, Hermeneutics and its predecessors
    h. Comparing positivist and interpretive research contributions
    i. Evaluating research in the Interpretive Tradition
    j. Is interpretivism compatible with positivism?

The assigned readings are the following:

Bansal, P, Smith,W. and Vaara E. (2018): “New ways of seeing through qualitative research, Academy of Management Journal, Vol. 61 (4): 1189-1195.

Bonache. J and Zarraga, C. (2019): Compensating International Mobility in a Worker’s Cooperative: An interpretive study, Journal of World Business, in press

Lee, A. S. (1991). Integrating positivist and interpretive approaches to organizational research. Organization science, 2(4), 342-365.

Basic Bibliography:

Aguinis, H., & Solarino, A. M. 2019. Transparency and replicability in qualitative research: The case of interviews with elite informants. Strategic Management Journal.

Alvesson, M., & Sandberg, J. (2011). Generating research questions through problematization. Academy of management review, 36(2), 247-27,1

Benton, T. (2001). Philosophy of social science: The philosophical foundations of social thought, McMilllan International.

Gibbert, M., Ruigrok, W., & Wicki, B. (2008). What passes as a rigorous case study?. Strategic management journal, 29(13), 1465-1474.

Kuhn, T. (1996): The Structure of Scientific Revolutions, 3rd Edition (First Edition 1962), The University of Chicago Press

Popper, K. (1963): “Science: Conjectures and Refutations.” From Conjectures and Refutations, pp. 33-41, 52-59. New York: Harper and Row

Rosenberg, A. (2011). Philosophy of science: A contemporary introduction. Routledge.

Sanders, P. (1982). Phenomenology: A new way of viewing organizational research. Academy of management review, 7(3), 353-360.

Sandberg, J. (2005). How do we justify knowledge produced within interpretive approaches?. Organizational research methods, 8(1), 41-68.

You have to register for the International Research Workshop to participate in this course.

Introduction to Survival Analysis

Institution: see Organisers & Supporters

Programme of study: International Research Workshop

Lecturer: Andrea Schäfer (SOCIUM/Universität Bremen)

Date: see Workshop Programme

Max. number of participants: 20

Credit Points: 5 CP for participating in the whole IRWS

Language of instruction: English

Contents: The goal of this course is to introduce you to the topic of survival (or time to event) analysis and describes selected methods used for modelling and evaluating survival data. General statistical concepts and methods discussed in this course include survival and hazard functions, Kaplan-Meier estimator and graph and Cox proportional hazards model. Accordingly, we will explore the different types of censoring and truncation and, discover the properties of the survival and hazard function. You will learn the derivation and use of Kaplan-Meier (KM) non-parametric estimates and learn how to plot the KM and test for differences between groups. Further, we explore the motivation, strength and limits of Cox’s semi-parametric proportional hazard model and know how to fit the model. For our computer sessions we will be using a sample of the SOEP (Socio-economic Panel) data set. The course requires participants to use Stata to analyse survival analysis data.

In this course, you will learn about:

  • The goal, problem and strengths of survival analysis
  • Differences of survival analysis methods
  • Censoring and truncation (concepts and types)
  • The distribution of failure times (functions, rates and ratio, data layout, descriptive statistics)
  • Basics of non-parametric analysis (estimating Kaplan Meier estimator and comparing curves, graphing)
  • Basics of semi-parametric analysis (model definition and features, understanding and estimating Cox’s PH model)

Required: intermediate statistical knowledge, basic Stata skills

Recommended literature and pre-readings:

Allison, P. A. (2014): Event History and Survival Analysis. Quantitative Applications in the Social Sciences. Sage

Cleves, M.; W. Gould, R. G. Gutierrez, and Y. V. Marchenko (2010): An Introduction to Survival Analysis Using Stata, (3nd ed), Stata Press.

DTC Desktop Companion to the German Socio-Economic Panel (SOEP). This documentation is intended to give novice users a “jump start” in understanding the SOEP, its structure, depth, and research potential:

Goebel, J.; M. M. Grabka, S. Liebig, M. Kroh, D. Richter, C. Schröder and J. Schupp (2018): The German Socio-Economic Panel Study (SOEP) In: Jahrbücher für Nationalökonomie und Statistik / Journal of Economics and Statistics.

Kleinbaum, D. G. and M. Klein (2005): Survival analysis: a self-learning text (2nd ed), Springer.

You have to register for the International Research Workshop to participate in this course.

13th International Research Workshop – Methods for PhD – 15–20 September 2019: Registration Open Now!

Akademie Sankelmark, Flensburg (Germany)


PARALLEL MORNING SESSION 1 (16 – 18 September 2019)

  • Data Analysis with Stata
    Tobias Gramlich, Hesse State Statistical Office
  • Qualitative Interviewing
    Dr. Sarah Potthoff, Ruhr-University Bochum
  • Grounded Theory
    Dr. Christine Moritz, Feldpartitur GmbH
  • Introduction to Survival Analysis
    Andrea Schaefer, University of Bremen
  • Writing your Literature Review
    Prof. Dr. Katharina Stornig, Justus-Liebig-University Gießen

PARALLEL AFTERNOON SESSION 2 (16 – 18 September 2019)

  • Data Analysis with R
    Dr. Marco Lehmann, UKE Hamburg
  • Analysing Panel and Spatial Data
    Prof. Dr. Timo Friedel Mitze, University of Southern Denmark
  • Qualitative Comparative Analysis (QCA)
    Dr. Jonas Buche, Leibniz University Hannover
  • Case Study Research
    Dr. Kamil Marcinkiewicz, University of Oldenbourg
  • Introduction to Data Mining and Quantitative Text Analysis with R
    Pascal Jürgens, Johannes Gutenberg-University Mainz

PARALLEL SESSION 3 (19 September 2019)

  • Philosophies of Sciences
    Prof. Dr. Jaime Bonache, Carlos III University of Madrid
  • Questionnaire Design
    Prof. Dr. Daniel Schnitzlein Leibniz University Hannover & DIW Berlin
  • Measuring Preferences using Conjoint Analytic Methods and Advanced Compositional Approaches
    Prof. Dr. Martin Meissner, University of Southern Denmark
  • Necessary Condition Analysis
    Prof. Dr. Sven Hauff, Helmut-Schmidt-University
  • Multi-level Modelling with R
    Dr. Daniel Lüdecke, UKE Hamburg


  • Wenzel Matiaske, Helmut-Schmidt-University
  • Simon Fietze, University of Southern Denmark
  • Heiko Stüber, Institute for Employment Research


499 Euro (with accommodation and meals)
299 Euro (without accommodation; lunch and dinner are included)

It is possible to get a certificate on 5 credit points (according to the European Credit Transfer System).


For any questions don’t hesitate to contact the workshop committee (
Please register for the workshop on the workshop website.


  • Helmut-Schmidt-University/University of the FAF Hamburg, Faculty of Economics and Social Sciences
  • Institute for Employment Research (IAB), The Research Institute of the Federal Employment Agency in Nuremberg
  • Akademie Sankelmark im Deutschen Grenzverein e.V.


  • Europa-Universität Flensburg
  • University of Hamburg, Faculty of Economics and Social Sciences
  • University of Hamburg, School of Business
  • Leuphana University Lüneburg, Faculty of Economics
  • Werkstatt für Personal- und Organisationsforschung e.V.

ReMaT – Research management training for early-stage researchers

A ReMaT workshop – Research management training for early-stage researchers – will take place in Hamburg on 18th and 19th November 2019. The workshop is designed for early-stage researchers in engineering and natural sciences, particularly PhD candidates from the 2nd year onwards. The idea of European networking is very much embedded in the concept, and we encourage participation from many different countries at the workshop.

ReMaT is an interactive, intensive workshop providing an introduction to research management. It involves two international trainers and is held in English. The modules of the workshop cover exploitation of knowledge and entrepreneurship, acquisition of grants, intellectual property rights and the management of interdisciplinary projects. They are delivered in such a way that it challenges participants to consider different perspectives on how they might use their PhD education in a variety of career paths, and convince others to hire them.

The organiser:
Tutech Innovation GmbH was founded in 1992 as the technology transfer institute for the Hamburg University of Technology. We are offering services regarding participation in EU funded programmes especially for publicly funded universities and SMEs. TUTECH ACADEMY workshops on technology transfer and innovation and research management equip participants from research and business with the right skill sets to do new work in their fields. Tutech Innovation GmbH has considerable experience in coaching researchers from a wide variety of backgrounds, disciplines and experience as well as nurturing those doing PhDs, participating in graduate schools or in the early stages of career development.

More information:
For further information please visit or send your enquiry to

Questionnaire Design

Institution: see Organisers & Supporters

Programme of study: International Research Workshop

Lecturer: Prof. Dr. Daniel Schnitzlein (Leibniz University Hannover & DIW Berlin)

Date: see Workshop Programme

Max. number of participants: 20

Credit Points: 5 CP for participating in the whole IRWS

Language of instruction: English

Contents: The course provides an overview of the theoretical basics and empirical evidence related to questionnaire design. The cognitive process of survey responding, challenges of designing effective survey questions including aspects of proper question wording and optimal response formats, as well as pretest techniques for evaluating survey questions will be discussed. The lecture will be accompanied by a practical part.

You have to register for the International Research Workshop to participate in this course.