Doktorandenweiterbildung: Einführung in die Meta-Analyse

Institution: Helmut-Schmidt-University Hamburg

Lecturer: Prof. Dr. Martin Eisend, Europa-Universität Viadrina Frankfurt (Oder)

Date:
19.11.2015, 13:00-18:00 Uhr
20.11.2015, 09:00-16:00 Uhr

Place: Helmut-Schmidt-Universität, Holstenhofweg 85, 22043 Hamburg

Language of instruction: German

Registration: Der direkte Kursbeitritt erfolgt unter diesem Link. Wer nicht Angehöriger der Helmut-Schmidt-Universität ist, lege sich zuvor bitte unter diesem Link ein Konto auf dem Ilias-System der HSU an.

Contents:
Meta-Analysen integrieren empirische Befunde mehrerer Untersuchungen zu einer bestimmten Fragestellung und analysieren die Variabilität dieser Befunde. Damit bieten sie Wissenschaftlern und Wissenschaftlerinnen eine Möglichkeit, bisherige Forschungsergebnisse quantitativ zu integrieren und zu bewerten und sich somit einen Überblick über die empirische Forschung zu einer Fragestellung zu verschaffen. Sie helfen Wissenschaftlern und Wissenschaftlerinnen auch bei der Erklärung und Interpretation von unterschiedlichen und zum Teil gegensätzlichen Befunden in der bisherigen Forschung. Durch ihre generalisierenden Befunde unterstützt die Meta-Analysen auch Praktiker bei der Entscheidungsfindung. Aufgrund der stark zunehmenden Anzahl von empirischen Untersuchungen in vielen Disziplinen der betriebswirtschaftlichen Forschung kommt die Meta-Analysen in diesen Bereichen zunehmend zum Einsatz.

Der Kurs wendet sich an Nachwuchswissenschaftler und Nachwuchswissenschaftlerinnen, die sich mit der Methode der Meta-Analysen vertraut machen möchten und lernen möchten, wie man diese erfolgreich einsetzt und verwendet. Nach Besuch des Kurses sind die Teilnehmer und Teilnehmerinnen in der Lage….

  • selbstständig Meta-Analysen zu einer von Ihnen gewählten Fragestellung durchzuführen, beginnend von der Literaturrecherche über die Kodierung von Studien bis hin zur softwaregestützten Auswertung der Daten;
  • unterschiedliche Meta-Analysen in der Fachliteratur im Hinblick auf die ver-wendeten Methoden zu unterscheiden, einzuordnen und zu beurteilen;
  • der inhaltlichen und methodischen Diskussion zur Meta-Analysen zu folgen.

Der Kurs setzt grundlegende Kenntnisse in Statistik und multivariater Datenanalyse voraus. Insbesondere sollten die Teilnehmer und Teilnehmerinnen mit Test-verfahren und regressionsanalytischen Techniken vertraut sein; erwünscht ist auch ein Grundverständnis von Strukturgleichungsmodellen.

Der Kurs setzt grundlegende Kenntnisse in Statistik und multivariater Datenanalyse voraus. Insbesondere sollten die Teilnehmer und Teilnehmerinnen mit Test-Verfahren und regressionsanalytischen Techniken vertraut sein; erwünscht ist auch ein Grundverständnis von Strukturgleichungsmodellen.

Informationen zum Raum und zu den Inhalten des Workshops (Handouts, Präsentationen, Beispieldaten) gehen Ihnen an den Tagen unmittelbar vor der Veranstaltung mit Hilfe des Ilias-Mailsystems zu.